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Abstract

In natural hazards we face several uncertainties due to our lack of knowledge and/or the
intrinsic randomness of the underlying natural processes. Nevertheless, deterministic
analysis approaches are still widely used in natural hazard assessments, with the pitfall
of underestimating the hazard with potentially disastrous consequences.5

In this paper we show that the Bayesian network approach offers a flexible
framework for capturing and expressing a broad range of different uncertainties as
those encountered in natural hazard assessments. Although well studied in theory, the
application of Bayesian networks on real-world data is often not straightforward and
requires specific tailoring and adaption of existing algorithms. We demonstrate by way10

of three case studies (a ground motion model for a seismic hazard analysis, a flood
damage assessment, and a landslide susceptibility study) the applicability of Bayesian
networks across different domains showcasing various properties and benefits of the
Bayesian network framework.

We offer suggestions as how to tackle practical problems arising along the way,15

mainly concentrating on the handling of continuous variables, missing observations,
and the interaction of both. We stress that our networks are completely data-driven,
although prior domain knowledge can be included if desired.

1 Introduction

Natural hazards such as earthquakes, tsunamis, floods, landslides or volcanic20

eruptions all share – despite of differing causes, triggers, and effects – many of the
same model- and decision theoretic questions. The underlying natural processes are
often complex, while the number of potential influencing factors is large. The single and
joint effects of the driving forces are not necessarily completely understood, potentially
introducing a large degree of uncertainty, which impacts any quantitative analysis.25

Additionally, the observation on the basis of which inference is made is often sparse,
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inaccurate and incomplete, adding yet another layer of uncertainty on top. Thus various
sources of uncertainty accumulate and interact in a non-trivial fashion. Indeed, this is
one of the reasons why probabilistic approaches are often avoided. Such probabilistic
approaches often seem intimidating given the large number of parameters required
for such a proceeding, where the analytical tools needed for a rigorous handling of5

uncertainties are unknown or at least not readily available.
Deterministic approaches rarely provide information on the uncertainty related to

parameter estimates beyond the use of statistical measures of dispersion such as
standard deviations or standard errors about empirical means. However, uncertainty
is a carrier of information to the same extent as a point estimate, and ignoring10

it or dismissing it as simply an error would be wrong. Ignoring uncertainties in
quantitative hazard appraisals may have disastrous effects, since it often leads to over-
or underestimates of certain event magnitudes. Yet, deterministic approaches are still
the state of the art in many applications. For example, tsunami early warning systems
evaluate pre-calculated synthetic databases and pick out the scenario that appears15

closest to a given situation in order to estimate its hazard (Blaser et al., 2011).
In this paper we consider Bayesian networks (BNs) that combine probability

theory with graph theory, thus allowing for an intuitive, consistent, and rigorous way
of quantifying uncertainties. The (in-)dependencies between the involved variables
relevant to a particular hazard domain are translated into a graph structure that enables20

improved understandings and direct insights into the relationships and workings of
a natural hazard system. Moreover, as BNs capture the joint distribution of all variables
of a given domain, they may be used for expressing any conditional probability
distribution of interest, thereby helping to answer quantitative questions on specific
scenarios or process response chains.25

In recent years BNs have already successfully been employed in a wide range of
earth sciences, including automatic classifications of seismic signals (e.g. Riggelsen
et al., 2007), tsunami early warning (e.g. Blaser et al., 2009, 2011), Probabilistic
Seismic Hazard Analyses (e.g. Kuehn et al., 2011), and earthquake induced landslide

5807

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
1, 5805–5854, 2013

The application of
Bayesian networks in

natural hazard
analyses

K. Vogel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

susceptibility (e.g. Song et al., 2012). Here we additionally highlight three applications
of BNs in natural hazard assessments that illustrate the flexibility of BNs. Alongside we
discuss problems that arise when BNs are learned from real world data. The handling
of continuous variables and incomplete observations is the chief problem here. Most
approaches we use are derived from existing ideas and standard approaches, but their5

combination is challenging, since the individual methods are highly interacting.
In the next section we give an introduction into BNs, which is followed by several

applications in natural hazards research. In Sect. 3 we develop a seismic ground
motion model based on a synthetic data set, which serves to showcase some typical
BN properties. We demonstrate an option to deal with continuous variables, making10

no prior assumptions about their distributional family. In Sect. 4 data that were
collected after the 2002 and 2005/06 flood events in the German Elbe and Danube
catchments are used to learn a BN for flood damage assessments. This incomplete
data set requires a treatment of missing observations, which is especially challenging in
combination with continuous variables. A last application in Sect. 5 deals with a regional15

landslide susceptibility model for Japan, where we investigate how the same set of
potential predictors of slope stability may produce nearly equally well performing,
though structurally different, BNs, thus revealing important variable interactions that
are often overlooked in landslide studies. This application further illustrates the model
uncertainty related to BN learning. Conclusions and scope for future work perspectives20

are presented in Sect. 6.

2 Bayesian networks

We operate in the world of probability theory and adhere to the corresponding
probability axioms. We treat all random quantities pertaining to a particular hazard
domain, including the covariates, as true random variables, each associated with25

a (conditional distribution), p(·|·). The interactions between those variables, be it
measurables, observations or otherwise, therefore really boils down to the question of
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how the distributions of those random variables interact (at all times in accordance with
the axioms of probability theory). A BN is a convenient framework for capturing such
interactions, both from an intuitive, but also from a computational point of view. We
refer to Koller and Friedman (2009) for a more detailed description of BNs in general
and will restrict ourselves here to a few key aspects of the formalism.5

2.1 Properties and benefits

As previously mentioned, BNs combine probability theory with graph theory,
representing all involved variables, X = {X1, . . . ,Xk}, as nodes in a directed acyclic
graph, DAG; these variables will coincide with the specific variables of a hazard domain
of interest. The arcs of the DAG point from the variables in the parent set, XPa(i ),10

to Xi (see Fig. 1), stating that Xi directly depends on (is influenced by, is affected
by, . . . ) XPa(i ). The probability distribution of Xi is defined conditional on its parents
set, p

(
Xi |XPa(i )

)
. Formally, a BN for X is a pair (DAG, θ ), the structure, DAG and

the parameters, θ =
⋃
{θxi |xPa(i )

= p
(
xi |xPa(i )

)
},1 which describes a joint distribution

factorizing as,15

P
(
X|DAG,θ

)
=

k∏
i=1

p
(
Xi |XPa(i )

)
. (1)

Figure 2 is an example of a simple BN. Although not immediately clear from Eq. (1),
a BN is characterized by many attractive properties which we may profit from in
a natural hazard setting; here we mention a few:

Prop. 1 – Graphical representation: The interactions of the variables of the entire20

“system” are encoded through the DAG. The BN structure thus provides information

1Here we assume discrete variables for which the set of parameters corresponds to the
conditional (point) probabilities for each combination of states. For continuous variables the
design of the parameters depends on the particular densities p(·|·).
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about the underlying processes and the way various variables communicate and share
“information” as it spreads around the network. Formally speaking the DAG encodes
independence assumptions between variables.

Prop. 2 – Use prior knowledge: The intuitive interpretation of a BN makes it possible
to define the BN beforehand based on prior knowledge; alternatively it may be learned5

from data, or even a combination of the two (cast as Bayesian statistical problem; see
later for details): pose a prior BN and update it based on observations.

Prop. 3 – Identify relevant variables: By learning the BN from data we may identify
the variables that are (according to the data) relevant. If several “islands” or isolated
single nodes (not connected) appear, then it indicates that these variables potentially10

may be irrelevant.
Prop. 4 – Capture uncertainty: Uncertainty can easily be propagated throughout

the network, between any nodes/variables; we effectively compute/estimate probability
distributions rather than single point estimates.

Prop. 5 – Allow for inference: Instead of explicitly modeling the conditional distribution15

of a predefined target variable, the BN captures the joint distribution of all variables. Via
inference, we can express any/all conditional distribution(s) of interest, in any directions
(including forensic and inverse reasoning), e.g. we may ask for an observed damage,
what is a likely intensity of the damage causing event. A detailed example for reasoning
is given in Sect. 4.3.20

Inference in BNs is closed under restriction, marginalization and combination
enabling for fast (close to immediate) and exact inference.

Prop. 6 – Use incomplete observations: During predictive inference (i.e., computing
a conditional distribution) incomplete observations of data do not pose a problem to
BNs. By the virtue of the probability axioms, it merely impacts the overall uncertainty25

involved.
In the course of the paper we will refer to these 1–6 properties to make clear what is

meant.
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For “real-life” modeling problems, including those encountered in natural hazard
analysis, adhering strictly to the BN formalism is often a challenging task, and
consequently the properties listed above at times seem rather theoretical/academic.
In the sections to come we will by way of examples shed some light on how typical
natural hazard problems can be formulated around BNs. We take a data-driven stance,5

and the aim is thus to learn BNs from observations collected; the next section will
introduce some key aspects related to inducing BNs.

2.2 Learning Bayesian networks

Data based BN learning can be seen as an exercise in finding a pair (DAG, θ )
which according to the BN decomposition in Eq. (1) could have been “responsible10

for generating the data”. For this we traverse the space of pairs looking for the BN
which maximizes a given fitness score; this should however be done with careful
consideration to the issues always arising in the context of model selection, i.e.,
over-fitting, generalization, etc. Several suggestions for BN fitness scoring appear in
literature derived from different theoretical principles and ideas. We opt for a Bayesian15

approach to learn BNs2. This has several advantages and allows us to elegantly
combine prior knowledge and data, i.e. we have encoded our prior belief on the BN
space (DAG, Θ) as P (DAG,Θ), we observe data d and obtain the revised distribution
P (DAG,Θ|d) based upon which we select the most probable BN. More specifically, we
may rewrite the joint posterior as,20

P (DAG,Θ|d)︸ ︷︷ ︸
posterior

∝ P (d|DAG,Θ)︸ ︷︷ ︸
likelihood

P (Θ,DAG)︸ ︷︷ ︸
prior

. (2)

The prior distribution allows us to compensate sparse data, artifacts, bias, etc. but
also allows us to assign domain specific prior preferences to certain BNs before seeing
data (Prop. 2). In the following applications we work with a non-informative prior, which

2Note that BNs are not necessarily to be interpreted from a Bayesian statistical perspective.
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at the same time acts as a penalty term that regularizes the DAG complexity and avoids
over-fitting. The likelihood term decomposes according to Eq. (1). Detailed descriptions
for prior and likelihood term are given in Appendix A1.

Using the BN MAP (Bayesian Network Maximum A Posteriori) score we can
maximize the right side of Eq. (2) (the product of the prior and the likelihood as given5

above) as to obtain the “best” BN given data; see Riggelsen (2008) for details with
regard to search strategy, hyper-parameter selection, etc.

In the following section we learn a ground motion model, which is used in probabilistic
seismic hazard analysis, as a BN; the used data set is synthetically generated. This
section serves as an illustration of the BN formalism “in action” and will also present10

some theoretical and practical problems along with potential solutions in the context of
BN learning. In the sections thereafter we will use real data.

3 Seismic hazard analysis: ground motion models

When it comes to decision making on the design of high risk facilities, the hazard arising
from earthquakes is an important aspect. In probabilistic seismic hazard analysis15

(PSHA) we calculate the probability of exceeding a certain ground motion at a certain
site within a certain time interval. One of the most critical elements in PSHA, often
carrying the largest amount of uncertainty, is the ground motion model. It describes
the conditional probability of a ground motion parameter, Y , such as (horizontal)
peak ground acceleration, given earthquake and site related predictor variables, X−Y .20

Ground motion models are usually regression functions, where the functional form
is derived from expert knowledge and the ground motion parameter is assumed to
be log-normally distributed: lnY = f (X−Y )+ε, with ε ∼N (0,σ2). The definition of the
functional form of f (·) is guided by physical model assumptions about the single and
joint effects of the different parameters, but also contains some ad hoc elements. Using25

the Bayesian network approach there is no prior knowledge required per se, but if
present it can be accounted for by encoding it in the prior term of Eq. (2). Is no reliable
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prior knowledge available, we work with a non-informative prior and the learned graph
structure provides insight into the dependence structure of the variables and helps for
a better understanding of the underlying mechanism. Modeling the joint distribution
of all variables, X = {X−Y ,Y }, the BN implicitly provides the conditional distribution
P (Y |X−Y , DAG,Θ), which gives the probability of the ground motion parameter for5

specific event situations needed for the PSHA.

3.1 The data

The event situation is described by the predictor variables X−Y = {M,R,SD,Q0,κ0,
VS30}, which are explained in Table 1. We generate a synthetic data set consisting
of 10 000 records. The ground motion parameter, Y , is the horizontal peak ground10

acceleration (PGA). It is generated by a so called stochastic model (Boore, 2003),
which distorts the shape of a random time series according to physical principles
and obtains time series with properties that match the ground-motion characteristics.
The predictor variables are either uniform (U) or exponentially (Exp) distributed within
a particular interval (see Table 1).15

Since the stochastic model does not have nice analytical properties and its usage is
non-trival and time consuming, surrogate models, which describe the stochastic model
in a more abstract sense (e.g. regressions), are usually used in PSHA. We show that
BNs may be seen as a viable alternative to the classical regression approach. However,
before doing so, we need to touch upon some practical issues arising when learning20

BNs from continuous data.
For continuous variables we need to define the distributional family for the

conditionals p(·|·) and thus make assumptions about the functional form of the
distribution. To avoid such assumptions and “let the data speak”, we discretize the
continuous variables, thus allowing for a completely data-driven and distribution-free25

learning. In the following subsection we describe an automatic discretization, which is
part of the BN learning procedure and takes the dependencies between the single
variables into account. However, the automatic discretization does not necessarily
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result in a resolution that matches the requirements for prediction purposes or decision
support. To increase the potential accuracy of predictions we approximate, once the
network structure is learned, the continuous conditionals with mixtures of truncated
exponentials (MTE) as suggested by Moral et al. (2001). More on this follows in
Sect. 3.3.5

3.2 Automatic discretization for structure learning

To keep the information loss during the discretization small the number of the intervals
and their boundaries have to be chosen carefully. A fine-grained discretization will
result in a sparsely connected BN due to regularization constrains, while a rough
discretization may not provide the required degree of resolution.10

Instead of discretizing as pre-processing step to the Bayesian network learning, we
use a multivariate discretization approach, that accounts for the BN structure. The
“optimal” discretization, Λ, thus depends on the DAG of the BN and the observed
(continuous) data, dc. Analogue to Sect. 2.2, we again cast the problem in a Bayesian
framework searching for the combination of (DAG, θ , Λ) that has the highest posterior15

probability given continuous data,

P
(
DAG,Θ,Λ|dc) ∝ P

(
dc|DAG,Θ,Λ

)
P (DAG,Θ,Λ) . (3)

Λ is defined by a set of interval boundary points for all variables and bins the original
data dc yielding d. Expanding on an idea by Monti and Cooper (1998) we assume that
all communication/information floss between the variables can be captured by their20

discrete representations. For given d and Λ is dc consequently independent of DAG
and Θ and the likelihood for observing dc (for a given discretization, network structure
and parameters) can be written as,

P
(
dc|DAG,Θ,Λ

)
= P

(
dc|d,Λ

)
P
(
d|DAG,Θ,Λ

)
(4)
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and Eq. (3) decomposes into

P (DAG,Θ,Λ|dc) ∝ P (dc|d,Λ)︸ ︷︷ ︸
continuous data

P (d|DAG,Θ,Λ)︸ ︷︷ ︸
likelihood (discrete)

P (DAG,Θ,Λ)︸ ︷︷ ︸
prior

.

The likelihood term is defined as for the separate BN learning for discrete data
(Sect. 2.2) and we use a non-informative prior again. For the continuous data we
assume that all continuous observations within the same, by Λ defined interval have5

the same probability. More information about the score definition can be found in the
Appendix A1 and technical details are given in Vogel et al. (2012, 2013). In the following
we discuss the BN and discretization learned from the synthetic seismic data set.

3.2.1 Learned ground motion model

Since we generated the data ourselves, we know which (in-)dependencies the10

involved variables should adhere to; this is expected to be reflected in the BN
DAG we learn from the synthetic data. Due to data construction are the predictors
variables M,R,SD,Q0,κ0,VS30 independent from each other and PGA depends on the
predictors. Figure 3 shows the dependence structure of the variables. The converging
edges at PGA indicate that the predictors become conditional dependent for given15

PGA. This means for given PGA they carry information about each other, e.g. for
an observed large PGA value a small stress drop indicates a close distance to the
earthquake. The knowledge about the dependence relations gives the opportunity
to use the seismic hazard application for an inspection of the BN learning algorithm
regarding to the reconstruction of the dependencies from the data, which is done in the20

following.
The network we found to maximize P (DAG,Θ,Λ|dc) for the 10 000 synthetic, seismic

data records is shown in Fig. 4. The corresponding found discretization is plotted
in Fig. 5, which shows the marginal distributions of the discretized variables. The
learned BN differs from the original one, mainly due to regularization constraints as25
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we will explain in the following: as mentioned in Sect. 2 the joint distribution of all
variables can be decomposed into the product of the conditionals according to the
network structure. For discrete/discretized variables the number of parameters needed
for the definition of p(Xi |xPa(i )) in Eq. (1) corresponds to the number of possible state
combinations for (Xi ,xPa(i )). Taking the learned discretization shown in Fig. 5, the BN5

of the data generating process (Fig. 3) is defined by 3858 parameters, 3840 needed
alone for the description of p(PGA|M,R,SD,Q0,κ0,VS30). A determination of that many
parameters from 10 000 records would lead to a strongly over-fitted model. Instead we
learn a BN, that compromises between model complexity and its ability to generate the
original data. The BN learned under these requirements (Fig. 4) consists of only 38710

parameters and still captures the most relevant dependencies.
Figure 6 shows the lnPGA values of the data set plotted against the single predictors.

A dependence on stress drop (SD) and distance (R) is clearly visible. These are also
the two variables with remaining converging edges on PGA, revealing that for given
PGA SD contains information about R and vice versa. The dependencies between15

PGA and the remaining predictors are much less distinctive, such that the conditional
dependencies between the predictors are negligible and the edges can be reversed
for the benefit of parameter reduction. The connection to VS30 is even neglected at all,
since its impact on PGA is of minor interest compared to the variation caused by the
other predictors.20

Note, that the DAG of a BN actually expresses the independencies (not the
dependencies) between the variables (Prop. 2). This means each (conditional)
independence statement encoded in the DAG must be true, while encoded
dependence relations must not hold per se. In turn this implies that each dependence
holding for the data should be encoded in the DAG. The learning approach applied25

here fulfils the task quite well, detecting the relevant dependencies, while keeping the
model complexity at a moderate level.

The model complexity depends not only on the DAG, but also on the discretization.
A complex DAG will enforce a small number of intervals and a large number of intervals

5816

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
1, 5805–5854, 2013

The application of
Bayesian networks in

natural hazard
analyses

K. Vogel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

will only be chosen for variables with a strong influence on other variables. This effect is
also visible for the learned discretization (Fig. 5). PGA is split into 8 intervals, distance
and stress drop into 4 and 5, while the other variables consist of only 2 to 3 intervals.

3.3 Approximation of continuous distributions with mixtures of exponentials

A major purpose of the ground motion model is the prediction of the ground motion5

(lnPGA) based on observations of the predictors; hence, although the BN captures the
joint distribution (Prop. 5) of all involved variables, primary focus is in this context on
a single variable, for which the accuracy of the prediction made with a BN is limited by
the resolution of the discretization learned. For the BN shown above, the discretization
of the target variable into 8 intervals enables a quite precise approximation of10

the continuous distribution, but this is not necessarily always the case. Complex
network structures and smaller data sets used for the BN learning lead to a coarser
discretization of the variables. To still enable precise estimations we may search for
alternative approximations of the (or at least some, in particular the primary variable(s)
of interest) continuous conditional distributions, once the BN has been learned.15

Moral et al. (2001) suggest to use mixtures of truncated exponentials (MTEs) for
this purpose, since they allow for the approximation of a variety of functional shapes
with a limited number of parameters (Langseth and Nielsen, 2008) and they are closed
under the operations used for BN inference: restriction, combination, marginalization
(Langseth et al., 2009). To approximate a conditional distribution p(Xi |xPa(i )) with MTEs,20

we partition the domain Ω(Xi ,xPa(i ))
into hypercubes D1, . . . ,DL and define the density

within each hypercube, Dl , such that it follows the form

p↓Dl
(Xi |xPa(i )) = a0 +

J∑
j=1

aj ebjXi+c
T
j xPa(i ) . (5)

The determination of the hypercubes and the number of exponential terms in each
hypercube as well as the estimation of the single parameters is done according to the25
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maximum likelihood approach described in Langseth et al. (2010). In the following we
show how the MTE approximation improves the BN prediction performance compared
to the usage of the discretized variables and we compare the results to those from
a regression approach.

3.3.1 Prediction performance5

We conduct a 10-fold cross validation to evaluate the prediction performance of the BN
compared to the regression approach: the complete dataset is divided into 10 disjoint
subsamples of which in each trial one is defined as test set, while the others are used
to learn the model (regression function or BN). The functional form of the regression
function is determined by expert knowledge based on the description of the Fourier10

spectrum of seismic ground motion and follows the form

f
(
X−Y

)
= a0 +a1M +a2M · lnSD+ (a3 +a4M) ln

√
a2

5 +R2 +a6κR +a7VS30+a8 lnSD

with κ = κ0 + t∗, t∗ = R
Q0Vsq

and Vsq = 3.5kms−1.

We compare the regression approach in terms of prediction performance to the
BN with discretized variables and with MTE approximations. For this purpose we15

consider for each model the conditional density distributions of lnPGA given the other
variables and inspect how much probability each density assigns to the real lnPGA
value. For the regression approach the conditional density follows a normal distribution,

N
(
f
(
X−Y

)
,σ2

)
, while it is defined via the DAG and the parameters θ using the BN-

models. Table 2 shows for each test set the conditional density of the observed lnPGA20

averaged over the individual records. An other measure for the prediction performance
is the mean squared error of the estimates for lnPGA (Table 3). We define the mean
values of the conditional densities as point estimates for lnPGA. For the regression
model the estimate i.e. corresponds to f (x−Y ).

Even though the discretization of lnPGA is relative precise in the discrete BNs25

(8 intervals in each trial, except for the first trial, where lnPGA is split into 7 intervals),
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the MTE-approximation of the continuous conditional distributions improves the
prediction performance of the BN. Still it does not entirely match the precision of
the regression function. Anyhow, the prediction performances are in the same order
of magnitude and we must not forget, that the success of the regression approach
relies on the expert knowledge used to define its functional form, while the structure5

of the BN is learned totally data driven. Further profits the regression approach in this
example from the fact that the target variable (lnPGA) is normally distributed, which is
not necessarily the case for other applications. Focusing on the prediction of the target
variable the regression approach also does not have the flexibility of the BN, which is
designed to capture the joint distribution of all variables and thus allows for inference10

into all directions (Prop. 5), as exemplified in Sect. 4.3. Additional benefits of BNs, like
their ability to make use of incomplete observations, will be revealed in the following
sections, where we investigate real-world data.

4 Flood damage assessment

In the previous section we dealt with a fairly small BN (few variables/nodes) and15

a synthetic data set. In this section we go one step further and focus on learning
a larger BN from real-life observations on damage caused to residential buildings
by flood events. Classical approaches, so called stage-damage functions, relate the
damage for a certain class of objects to the water stage or inundation depth, while
other characteristics of the flooding situation and the flooded object are rarely taken20

into account (Merz et al., 2010). Even though it is known that the flood damage is
influenced by a variety of factors (Thieken et al., 2005), stage-damage functions are
still widely used. This is due to the fact that the number of potential influencing factors
is large and the single and joint effects of these parameters on the degree of damage
are largely unknown.25
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4.1 Real-life observations

The data collected after the 2002 and 2005/06 flood events in the Elbe and Danube
catchments in Germany (Thieken et al., 2005; Elmer et al., 2010) offer a unique
opportunity to learn about the driving forces of flood damage from a BN perspective.
Figure 7 shows the investigated catchments. The data set consists of 1135 records5

of discrete and continuous variables describing the flooding situation, building and
household characteristics, precaution, warning and emergency measures and building
damage. Table 4 lists the 29 considered variables allocated to their domains. In
Sect. 3.2 we already dealt with the issue of continuous data when learning BNs; here
we will apply the methodology presented there. However, in contrast to the synthetic10

data from the previous section, many real world data sets are for different reasons
lacking some observations for various variables, and for the data set at hand the
percentage of missing values is below 20% for most variables yet for others it reaches
almost 70%. In the next subsection we show how we deal with the missing values in
the setting of the automatic discretization described in Sect. 3.2 when learning BNs.15

4.2 Handling of incomplete records

To learn the BN we again maximize the joint posterior for the given data, Eq. (3). The
calculation of the joint posterior requires for each variable Xi the number of counts for
each combination of states for (Xi ,xPa(i )). However this is only given for complete data
and for missing values it can only be estimated by using expected completions of the20

data. We note that a reliable and unbiased treatment of incomplete data sets (no matter
which principled method is applied) is only possible for missing data mechanisms
that are ignorable according to the missing (completely) at random (M(C)AR) criteria
as defined in Little and Rubin (1987), i.e. the absence/presence of a data value is
independent of the unobserved data. For the data sets considered in this paper we25

assume the MAR criterion to hold and derive the predictive function/distribution based
on the observed part of the data in order to estimate the part which is missing.
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In the context of BNs a variety of approaches has been developed to estimate
the missing values (so-called “imputation”). Most of these principled approaches are
iterative algorithms based on Expectation-Maximization (e.g. Friedman, 1997, 1998)
or stochastic simulations (e.g. Tanner and Wong, 1987). In our case we already have
to run several iterations of BN learning and discretization, each iteration requiring the5

estimation of the missing values. Using an iterative approach for the missing value
prediction will thus easily become infeasible. Instead we use a more efficient albeit
approximate method, using the Markov Blanket Predictor developed by Riggelsen
(2006).

The idea is to generate a predictive function which enables for predicting a missing10

variable Xi based on the observations of its Markov Blanket (MB), XMB(i ). The Markov
Blanket identifies the set of variables directly influencing Xi , i.e. parents, children and
parents of children. For illustration see Fig. 8a. Assuming the MB is fully observed it
effectively blocks influence from all other variables, i.e. the missing value depends only
on its MB. When some of the variables in the MB are missing, it does not shield off Xi ;15

although maybe not immediately clear, this follows directly from the BN factorization
of the joint distribution. However, for predictive approximation purposes we choose to
always ignore the impact from outside the MB. Hence, the predictions for Xi based on
observed data factorizes according to the DAG in Fig. 8a, as,

P (Xi |XMB(i ),θ ,DAG)∝θXi |xPa(i )

∏
j∈Ch(i )

θXj |xPa(j )
, (6)20

where Ch(i ) are the variable indices of the children of Xi . The prediction of Xi requires
inference in the BN (albeit very simple) where correct estimates of all θ are assumed.
However, these in general can not be given without resorting to iterative procedures. To
avoid this we first define a slightly modified version of the predictive function based on
DAG′ which is derived from DAG by allocating edges, pointing to Xi , to each variable25

in its MB; see Fig. 8. The resulting DAG′ preserves all dependencies given in DAG and
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can alternatively be used for the prediction of Xi ,

P (Xi |xDAG′

Pa(i ) ,θDAG′
,DAG′)

def
= θDAG′

Xi |xPa(i )
. (7)

For this predictive distribution we need to estimate the parameters θDAG′

Xi |xPa(i )
. However,

this we can approximately estimate without using iterative methods by a similar cases
approach3, described in Appendix A2. A detailed description for the generation of the5

predictive distribution is given in Riggelsen (2006); Vogel et al. (2013).
To avoid confusions, we want to stress that the MBs of the individual variables

change during the BN-learning procedure. The prediction of the missing values has
to be updated for each change of the DAG.

4.3 Results10

Coming back to the flood damage data, we have three variables with more than
one third of the observations missing: flood experience (69 % missing), warning
quality (56 % missing) and lead time elapsed without emergency measures (54 %
missing). In a first “naive” application (Vogel et al., 2012) no special attention was on
a proper treatment of missing values; the missing values were simply randomly imputed15

resulting in the isolation of two variables (flood experience and lead time elapsed)
in the network; no connection to any other variable was learned (Fig. 9a). Applying
the Markov Blanket predictor the situation changes and a direct connection from the
relative building damage, rloss, to flood experience is found as well as a connection
between warning source and elapsed lead time (Fig. 9b). These relations, especially20

the first one, match with experts expectations and speak for an improvement of the
learned BN structure.

3Note that more parameters are required for the derived predictive distribution Eq. (7), but
now at least all influencing variables are considered jointly, whereas in the former case Eq. (6)
we would have estimated the parameters based on the parent sets only if a non-iteraive similar
cases approach would have been used.
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Using the graphical representation (Prop. 1), as mentioned in Sect. 2.1 the learned
DAG (Fig. 9b) gives insight into the dependence relations of the variables. It reveals
a number of direct links connecting the damage describing variable with almost all
subdomains. This supports the demand for improved flood damage assessments that
take several variables into account (Merz et al., 2010). Moreover, the DAG shows5

which variables are the most relevant for the prediction of rloss. Especially the domains
“precaution” and “flood parameters” are densely connected with the building damage
and should be included in any damage assessment (Prop. 3).

Existing approaches for flood damage assessments usually consider fewer variables
and an employment of a large number of variables is often considered as10

disadvantageous, since complete observations for all involved variables are rare.
The requirement for complete observations does not hold for BNs (Prop. 6). The
prediction of the building damage, e.g., depends only on the variables of its Markov
Blanket (marked with a bold frame in Fig. 9). Is the observation of the Markov Blanket
variables incomplete (not all variables are observed at inference time), information15

from outside the Markov Blanket “flows” into the prediction by indirectly marginalizing
(summing) missing variables out. The use of many variables thus now provides
additional knowledge and proves to be an advantage.

The capability of BNs to predict from incomplete observations enables us to make
predictions at an early stage of an event, employing only the information that is present20

at any given time. The prediction can subsequently be updated as new information
becomes available.

4.3.1 Prediction performance

The prediction of the relative building loss is of primary interest in flood damage
assessments. Similar to our proceeding for the ground motion modeling, we25

approximate the distribution of the target variable with mixtures of truncated
exponentials, thus achieving a better resolution for the distribution of interest. The
resulting prediction performance of the BN is compared to currently used flood damage
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assessment approaches, namely the stage-damage function (sdf) and the FLEMOps+r
model (Elmer et al., 2010), which was developed from the same data set, estimating
the building damage based on water depth, flood frequency, building type, building
quality, contamination and private precaution. While sdf and FLEMOps+r give point
estimates, the BN gives us a distribution for rloss and thus reveals the uncertainty of5

the prediction (Prop. 4). Especially when it comes to decision making, the identification
of uncertainty is a major advantage of the BN. However, to allow for model comparison,
we reduce the distribution provided by the BN to its mean value, which we define to be
the estimate of rloss. Table 5 shows the mean squared error of a 5-fold cross validation
for the three model approaches. The prediction performance of the BN is comparable10

to the one of the FLEMOps+r, while the BN has the additional advantage to model the
whole distribution of the target variable and to conduct the prediction even though not
all variables are observed.

4.3.2 Example for inference: impact of precaution

As an example of reasoning (Prop. 5), we consider the effect of precaution15

on the building loss. Figure 10 shows the distribution of the building loss for
a good precaution (precautionary measures indicator > 14) and a bad precaution
(precautionary measures indicator ≤ 14) in a general case (Fig. 10a: all other variables
are unknown and summed out) and for a specific flood event (Fig. 10b: 7.5m ≤
water depth < 96.5m; 82h ≤ duration < 228h; 1 ≤ velocity). We may appreciate, how20

a good precaution increases the chance for no or only small building losses.
Similar investigations may support the identification of efficient precautionary

measures, not only in the context of flood events, but for natural hazards in general.
They may also help to convince authorities or private persons to undertake the
suggested precautions. Using the flexibility of BNs and their ability to model specific25

situations, BNs may thus contribute to a better communication between scientists and
non-scientific stakeholders. BNs can also be used for forensic reasoning, i.e. we can
turn around the direction of reasoning in the just considered example and ask for
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a given observed damage in a specific or general event situation, what is a likely state
of precaution. Forensic reasoning might be of interest e.g. for insurance companies.

5 Landslides

So far we assumed the existence of a unique model that explains the data best,
but in practical problems there may be many models almost as good as the best,5

i.e. explaining the data similarly well. This results in an uncertainty about which BN
structure to use. We consider this problem in our last application, where we work on
landslides, which are an other ubiquitous natural hazard in many parts of the world.

A key theme in many landslide studies is the search for those geological,
hydroclimatological, topographic and environmental parameters that are suitable for10

sufficiently predicting the susceptibility to slope failure in a given region. A wide
range of multivariate data analysis techniques has been proposed to meet this
challenge. Amongst the more prominent methods are logistic regression, artificial
neural networks, and Bayesian Weights-of-Evidence. The popularity of such methods
is only matched by their seeming success: A recent review of 674 scientific papers15

on the topic indicates that most reported success rates are between 75 % and 95 %,
which raises the question why landslides still continue to cause massive losses despite
this seemingly high predictive accuracy (Korup and Stolle, 2013). Moreover, success
rates do not show any significant increase over the last ten years regardless of the
number of landslide data or predictors used. An often overlooked key aspect in these20

analyses is the potential for correlated or interacting predictor candidates. Few studies
have stringently explored whether this likely limitation is due to physical or statistical
(sampling) reasons.
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5.1 Data

We use a database of nearly 300 000 landslide deposit areas that derive mostly from
deep-seated slow-moving failures and earthflows throughout Japan. This inventory was
compiled by the National Research Institute for Earth Science and Disaster Prevention
NIED (http://lsweb1.ess.bosai.go.jp/gis-data/index.html), and is one of the largest of its5

kind available. We have compiled a number of geological, climatic, and topographic
metrics throughout the Japanese islands to test their influence on the average fraction
of landslide-affected terrain that we computed within a 10 km radius. Most of our
candidate predictors have been used in modified form in other studies (Table 6). While
all of these candidate predictors may be physically related to slope instability, part of10

this choice of predictor composition is intentionally arbitrary in order to learn more about
its effects on BN learning and structure. The final data set used for the BN learning
consists of 553 records, where ∼ 0.4% of the data are missing.

5.2 Uncertainty in BN structure

Ideally, a given model should adequately encapsulate natural phenomena such as the15

causes and triggers of slope instability. However, there may be several equally well
poised, but competing, models because of the intrinsic uncertainty tied to the governing
processes. In practice we also face other limitations that prevent us from focussing on
one single best model. The finite number of observations we have at our disposal for
learning, and the fact that it is unclear which relevant predictor variables to consider20

for landslide prediction implies that several models may be justifiable. This is a general
problem when attempting to formally model natural systems. In our case this means
that several BNs might explain the data (almost) equally well, i.e. receive a similar score
according to Eq. (2).

An additional source of uncertainty can be attributed to the structure learning25

algorithm used to maximize the score defined in Eq. (2) or – for continuous variables
– in Eq. (3). For infinite data sets the algorithm terminates according to Meek’s
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Conjecture in the (unique) optimal equivalence class of DAGs (Chickering, 2002),
but this does not necessarily hold for finite data sets, incomplete observations and
a search space extended by the discretization. The algorithm for the traversal of the
BN hypothesis space contains stochastic elements and may get stuck in local optima
providing slightly different results for different runs.5

To analyze this random behavior, we run the BN learning and discretization algorithm
ten times on the same data set of landslide data. We do not expect to end up with the
same BN in each trial, as the constraints to meet Meek’s Conjecture are not fulfilled.
Instead, we are more interested in documenting how strongly the results differ from
each other.10

Figure 11 gives a summarized representation of the BN DAG structures. The
frequency with which an edge between two variables is learned is encoded by the
widths (by scaling it accordingly). Despite of the difference in DAG structures, all
learned BNs seem to model the data generating process almost equally well, which
can be gathered from the score obtained by Eq. (3); for the BNs learned, we get a score15

between −64364.42 and −64253.98. This is a promising result, since it indicates, that
even though the algorithm gets stuck in local maxima, the quality of the results does
not differ significantly. This supports the assumption that the quality of the learned BN
is not seriously affected by random effects of the learning algorithm. Multiple runs of
the algorithm on other data sets confirm this assumption.20

In the literature on BN learning (and on model learning based on data in
general) ideas of how to handle several competing, but all justifiable BNs have been
investigated. Friedman et al. (1999) use bootstrap sampling to learn BNs from different
variations of the data set. Based on those they develop a confidence measure on
features of a network (e.g., the presence of an edge or membership of a node to25

a certain Markov Blanket). A Bayesian approach is presented by Friedman and Koller
(2000) and Riggelsen (2005) who approximate the Bayesian posterior on the DAG
space using a Markov Chain Monte Carlo approach. An adaptation of these methods
for the extended MAP score introduced in this paper is left for future work.
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5.3 Results

Despite of (or rather thanks to) the DAG structural differences we can glean some
instructive insights from the learned BNs. The fact that we can learn something about
the landslide-affected terrain from several BN structures indicates that the different
predictors are highly interacting, and that a missed link between two variables can5

often be compensated by other interactions. To get an understanding which variables
are most relevant for predicting landslide-affected terrain, we coded the variables in
Fig. 11 by the frequency with that they occur as part of the target variable’s Markov
Blanket, where darker hues indicate more frequent occurrences.

Perhaps the most surprising aspect of the learned BNs is that only few of the10

predictors that have been invoked traditionally to explain landslide susceptibility are
duly represented in the Markov Blanket. These include mean annual precipitation (part
of the MB in each run) – including some derivatives such as precipitation variability
(either annual or monthly variation is part of the MB) – and mean local topographic
relief (part of the MB in half of the runs).15

Instead, predictors such as regionalised bedrock river sinuosity or short-term (10 yr
cumulative) surface uplift derived from a dense network of GPS stations seem to
provide relevant information about landslide-affected terrain in Japan. Bedrock river
sinuosity may reflect the ability of rivers to carve more pronounced meanders in
rocks with closely spaced defects. Therefore, sinuosity could be linked to first order20

to important rock-mass properties that govern the abundance of landslides. However,
the link to contemporary surface uplift is less clear. Many of Japan’s currently subsiding
areas are limited to low-relief forearc areas, which feature fewer landslides, hence an
indirect link via topography seems plausible. Yet predictors such as mean elevation or
bedrock channel steepness (as a proxy of fluvial erosion and undercutting of hillslopes)25

play largely subdued roles in the learned BNs part of the MB. Also, the role of lithology,
expressed by the fractions of different rock types outcropping in a given area form
a highly interacting cluster, where the information about accretionary complexes, i.e.
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heavily tectonized and welded remnants of former island arcs, seems to be of major
importance for the landslide prediction. Alternatively it is either the fraction of plutonic,
sedimentary or volcanic rocks that is part of the MB.

The learned BN structures are counter-intuitive compared to many other
susceptibility models that traditionally emphasize hillslope inclination and topographic5

relief. Further studies must show, if the found dependencies are regional artifacts or
valid on a larger scale. Nevertheless, these findings illustrate that the BN approach may
reveal novel and unexpected insights into regional landslide prediction by highlighting
unusual links between predictor variables that other multivariate models may not show
as clearly. Equally important, BNs underscore which predictors may yield sufficient10

predictive potential should others not be available.

6 Conclusions

The Bayesian Network approach is a powerful framework to capture uncertainties and
probabilistic elements in natural hazard assessments. We demonstrated its flexible
applicability in seismic hazard, flood damage, and landslide susceptibility analyses.15

Alongside we discussed the handling of continuous data and incomplete observations
as well as the uncertainty about the model structure, i.e. challenges that may arise
when BNs are learned from real world data. Our suggested way of dealing with these
problems is fully data driven and can thus easily be transfered to other domains.

Since the interest of most natural hazard assessment is in the prediction of a certain20

target variable, we compared the prediction performance of the BNs learned for the
seismic hazard and flood damage application to currently used models. In both cases
the BNs perform reasonable well. This is especially promising, since the BNs are
designed to capture the joint distribution of all variables and thus put similar effort
into the prediction of each variable, whereas alternative models focus on predicting the25

target variable solely. For a better prediction performance, we might think of different
graphical models that share the focus on the target variable. These could include
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(tree augmented) Naive Bayes networks or an adapted score for the network learning
that would weight more the target variable. Thus learned networks may also be more
reliable in the identification of the variables relevant for the prediction, but will fail to
capture the overall picture of dependence relations.

Working with BNs we profit from several attractive properties inherent to the BN5

framework. Learning the DAG structure and parameters from data, BNs require no
prior domain knowledge. Yet if available, it can be exploited via the prior term, which
is part of the scoring function. The discovered (in-)dependence relations help us to
understand the underlying process and to identify (ir-)relevant variables. An intuitive
understanding is supported by the graphical representation of BNs, although the same10

data may produce different graphs with comparable performance. This highlights the
potential for new insights into interactions between large sets of candidate predictors.
The ability of BNs to predict from incomplete observations allows for hazard estimations
at an early stage of an event. Using inference we can estimate missing values based
on observations from related variables. The prediction can be updated as soon as new15

information about so far missing variables becomes available.
Capturing the uncertainty and providing a probability distribution instead of a point

estimate, BNs provide a valuable contribution on the basis of which decision making
should be made. Allowing for inference they also enable detailed examinations of
specific scenarios. Thus Bayesian Networks may thus be used for an improved20

communication between scientist and public authorities and help for a better evaluation
of hazards in general.
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Appendix A

A1 BN learning: MAP score

For a data based BN learning we search for the pair (DAG,θ ) that has the highest
probability for the observed data and thus maximizes the joint posterior5

P (DAG,Θ|d)︸ ︷︷ ︸
posterior

∝ P (d|DAG,Θ)︸ ︷︷ ︸
likelihood

P (Θ,DAG)︸ ︷︷ ︸
prior

,

which corresponds to the MAP score of the BN.
Investigating the single components of the score, we find that the likelihood term

P (d|DAG,Θ) is the product of Eq. (1) for every independent sample, hence, for
complete data this is10

P (d|DAG,θ ) =
|d|∏
l=1

k∏
i=1

p
(
x

(l )
i |x(l )

Pa(i )

)
=

∏
i ,xi ,xPa(i )

θ
n(xi ,xPa(i ))

xi |xPa(i )
, (A1)

where x
(l )
i is the observed value of Xi in the l -th record and x

(l )
Pa(i ) is the corresponding

observation of the parent set. This reduces to a function of n(xi ,xPa(i )), the number of
counts (occurrences) of the values (xi ,xPa(i )) in the data.

The joint prior distribution decomposes as P (Θ,DAG) = P (Θ|DAG)P (DAG). For the15

applications in this paper we assume that all DAGs are equally likely and consequently
define P (DAG) to be uniform over the space of BN structures. P (Θ|DAG) we define as
a non-informative prior, acting at the same time as a penalty term. For discrete data
this is a (product) Dirichlet distribution given by

P (θ |DAG) =
k∏

i=1

∏
xPa(i )

Γ
(∑

xi
α(xi ,xPa(i ))

)
∏

xi
Γ
(
α(xi ,xPa(i ))

) ∏
xi

θ
α(xi ,xPa(i ))−1

xi |xPa(i )
, (A2)20
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where α(·) are so-called hyper-parameters, primarily governing the regularization (to
avoid over-fitting).

MAP score extension for continuous variables

Are continuous variables contained in the data set, we learn a discretization, Λ, parallel
to the BN. The here used extended MAP score corresponds to the joint posterior of BN5

and discretization:

P (DAG,Θ,Λ|dc) ∝ P (dc|DAG,Θ,Λ)P (DAG,Θ,Λ).

Considering Eq. (4) we rewrite the equation above as

P (DAG,Θ,Λ|dc)

∝ P (dc|d,Λ)︸ ︷︷ ︸
continuous data

P (d|DAG,Θ,Λ)︸ ︷︷ ︸
likelihood (discrete)

P (DAG,θ ,Λ)︸ ︷︷ ︸
prior

.10

The likelihood term is defined as in Eq. (A1) and the prior decomposes into
P (Θ|DAG,Λ)P (Λ|DAG)P (DAG). For P (Λ|DAG) and P (DAG) we assume uniform
distributions analogue as for the original MAP score and we define P (Θ|DAG,Λ) as
product Dirichlet again Eq. (A2). For the continuous data term we define15

P (dc|d,Λ) =
∏
i

∏
xi

(
1

n(xi )

)n(xi )

,

which corresponds to the assumption, that all continuous observations are equally
likely within the same interval. The joint posterior has a closed form as a function of
n(·).

A2 Similar cases approach20

The estimation of a missing value as described in Sect. 4.2 requires, according to
Eq. (7), the prediction of the parameter θDAG′

Xi |xPa(i )
from incomplete data. Instead of using
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the unobserved statistics n(·), we rely on counts of similar cases here. The statistics,
s(xi ,xPa(i )), is a weighted count of all records where Xi = xi and the observed part
of the parents set xPa(i ) matches with xPa(i ); for each record where (Xi ,xPa(i )) is fully
observed we add 1 to s(xi ,xPa(i )). For an incomplete observed parents set we count
the possible completions of the record and add 1/number-of-possible-completions to5

s(xi ,xPa(i )). Refer to Fig. 12 for an example. We now estimate the parameters

θ̂DAG′

xi |xPa(i )
=

s(xi ,xPa(i ))∑
xi
s(xi ,xPa(i ))

,

fully defining the predictive distribution for Xi Eq. (7).
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Table 1. Variables used for the ground motion model.

Xi Description Distribution[Range]

Predictors

M Moment magnitude of the earthquake U[5,7.5]
R Source-to-site distance Exp[1km,200km]
SD Stress released during the earthquake Exp[0bar,500bar]
Q0 Attenuation of seismic wave amplitudes in

deep layers
Exp[0s−1,5000s−1]

κ0 Attenuation of seismic wave amplitudes
near the surface

Exp[0s,0.1s]

VS30 Average shear-wave velocity in the upper
30m

U[600ms−1,2800ms−1]

Ground motion parameter

PGA Horizontal peak ground acceleration According to the stochastic model
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Table 2. Results of a 10-fold cross validation to test the prediction performance of the BN
(discrete and MTE approximations of the conditional distributions) and the regression approach.
It shows for each trial the average of the conditional density for the observed lnPGA value.

Averaged conditional density

BNdiscrete BNMTE Regression

0.237 0.320 0.331
0.240 0.297 0.329
0.239 0.298 0.331
0.218 0.255 0.323
0.216 0.260 0.339
0.222 0.257 0.339
0.215 0.252 0.332
0.243 0.317 0.330
0.212 0.249 0.328
0.243 0.315 0.331
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Table 3. Results of a 10-fold cross validation to test the prediction performance of the BN
(discrete and MTE approximations of the conditional distributions) and the regression approach.
It shows for each trial the mean squared error of the predicted lnPGA.

Mean squared error

BNdiscrete BNMTE Regression

1.021 0.749 0.663
1.197 0.963 0.680
1.082 0.821 0.673
1.262 0.951 0.723
1.201 0.851 0.629
1.298 1.059 0.625
1.297 1.077 0.672
1.149 0.713 0.701
1.343 1.161 0.692
1.169 0.841 0.666
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Table 4. Variables used for the flood damage assessment. C: continuous, O: ordinal,
N: nominal.

Variable Scale and range

Flood parameters
Water depth C: 248 cm below ground to 670 cm above ground
Inundation duration C: 1 to 1440 h
Flow velocity indicator O: 0= still to 3=high velocity
Contamination indicator O: 0=no contamination to 6=heavy contamination
Return period C: 1 to 848 yr

Warning and emergency measures
Early warning lead time C: 0 to 336 h
Quality of warning O: 1= receiver of warning knew exactly what to do to

6= receiver of warning had no idea what to do
Indicator of flood warning source N: 0=no warning to 4=official warning through authorities
Indicator of flood warning information O: 0=no helpful information to 11=many helpful

information
Lead time period elapsed without using it for emergency
measures

C: 0 to 335 h

Emergency measures indicator O: 1=no measures undertaken to 17=many measures
undertaken

Precaution
Precautionary measures indicator O: 0=no measures undertaken to 38=many, efficient

measures undertaken
Perception of efficiency of private precaution O: 1= very efficient to 6=not efficient at all
Flood experience indicator O: 0=no experience to 9= recent flood experience
Knowledge of flood hazard N (yes/no)

Building characteristics
Building type N (1=multifamily house, 2= semi-detached house,

3=one-family house)
Number of flats in building C: 1 to 45 flats
Floor space of building C: 45 to 18000 m2

Building quality O: 1= very good to 6= very bad
Building value C: 92 244 to 3 718 677€

Socio-economic factors
Age of the interviewed person C: 16 to 95 yr
Household size, i.e. number of persons C: 1 to 20 people
Number of children (< 14 yr) in household C: 0 to 6
Number of elderly persons (> 65 yr) in household C: 0 to 4
Ownership structure N (1= tenant; 2=owner of flat; 3=owner of building)
Monthly net income in classes O: 11=below 500€ to 16=3000€ and more
Socioeconomic status according to Plapp (2003) O: 3= very low socioeconomic status to 13= very high

socioeconomic status
Socioeconomic status according to Schnell et al. (1999) O: 9= very low socioeconomic status to 60= very high

socioeconomic status

Flood loss
rloss – loss ratio of residential building C: 0=no damage to 1= total damage
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Table 5. Mean squared errors of a 5-fold cross-validation, where the relative building loss is
predicted with the three models stage-damage function, FLEMOps+ r and Bayesian Networks.

sdf FLEMOps+ r BNMTE

1 0.0111 0.0108 0.0104
2 0.0133 0.0114 0.0116
3 0.0161 0.0145 0.015
4 0.0200 0.0194 0.0169
5 0.0166 0.0150 0.0163

Avg 0.0154 0.0142 0.014

5841

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
1, 5805–5854, 2013

The application of
Bayesian networks in

natural hazard
analyses

K. Vogel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 6. Variables used for the landslide model.

Name Definition Unit

Mean elevation Average of elevation values within catchment boundaries [m]

Catchment area Log-transformed catchment area [a.u.]

Catchment perimeter Total length of catchment divides [m]

Mean local topographic relief Maximum elevation difference in a 10 km radius [m]

Mean annual precipitationa Based on interpolated rainfall station data (reference period 1980–2010) [mm]

Mean coefficient of variation of
annual precipitationa

Based on interpolated rainfall station data, with standard deviation divided by
mean (reference period 1980–2010)

[1]

Mean coefficient of variation of
monthly precipitationa

Based on interpolated rainfall station data, with standard deviation divided by
mean (reference period 1980–2010)

[1]

Mean surface uplift 2001–2011b GPS-derived accumulated surface uplift 2001–2011 [m]

Mean surface uplift 2010–2011b GPS-derived accumulated surface uplift 2010–2011 [m]

Mean fraction of 10 % steepest
bedrock channels

Average fraction of 10 % steepest channels per unit length of bedrock-river
drainage network in a 10 km radius, based on an arbitrarily set reference
concavity θ = 0.45

[1]

Mean bedrock channel
steepness

Average of channel steepness index per reach length, based on an arbitrarily
set reference concavity θ = 0.45

[1]

Regionalised river sinuosity Average bedrock-channel sinuosity weighted by drainage network length in
a 10 km radius calculated as the flow length of a given channel segment
divided by its shortest vertex distance

[1]

Fraction of volcanic rocksc Fraction of catchment area underlain by volcanic rocks [1]

Fraction of lakes Fraction of catchment area covered by lakes [1]

Fraction of plutonic rocksc Fraction of catchment area underlain by plutonic rocks [1]

Fraction of sedimentary rocksc Fraction of catchment area underlain by sedimentary rocks [1]

Fraction of accretionary complex
rocksc

Fraction of catchment area underlain by accretionary complex
rocks

[1]

Fraction of metamorphic rocksc Fraction of catchment area underlain by metamorphic rocks [1]

Median area of landslide-
affected terrain

Fraction of landslide terrain per unit catchment area within a 10 km radius
calculated using an inventory of mostly prehistoric landslide-deposit areas

[1]

a Calculated using data provided by the Japan Meteorological Agency (JMA, http://www.jma.go.jp/jma/indexe.html)
b Calculated from secular high-precision levelling data (Kimura et al., 2008)
c Calculated using the seamless digital geological map of Japan (1 : 200 000) available from the Geological Survey of Japan
(https://gbank.gsj.jp/seamless).
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Mean squared error

BNdiscrete BNMTE regression

1.021 0.749 0.663

1.197 0.963 0.680

1.082 0.821 0.673

1.262 0.951 0.723

1.201 0.851 0.629

1.298 1.059 0.625

1.297 1.077 0.672

1.149 0.713 0.701

1.343 1.161 0.692

1.169 0.841 0.666

Table 3. Results of a 10-fold cross validation to test the prediction performance of the BN (discrete and MTE

approximations of the conditional distributions) and the regression approach. It shows for each trial the mean

squared error of the predicted lnPGA.

Fig. 1. Illustration of a parent set XPa(i) of Xi in a BN.

P (A,B,C,D,E) = p(E|C,D)p(D)p(C|A,B)p(B)p(A)

Fig. 2. Example for the decomposition of the joint distribution according to a DAG.

24

Fig. 1. Illustration of a parent set xPa(i ) of Xi in a BN.
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Table 3. Results of a 10-fold cross validation to test the prediction performance of the BN (discrete and MTE

approximations of the conditional distributions) and the regression approach. It shows for each trial the mean

squared error of the predicted lnPGA.

Fig. 1. Illustration of a parent set XPa(i) of Xi in a BN.

P (A,B,C,D,E) = p(E|C,D)p(D)p(C|A,B)p(B)p(A)

Fig. 2. Example for the decomposition of the joint distribution according to a DAG.
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Fig. 2. Example for the decomposition of the joint distribution according to a DAG.

5844

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
1, 5805–5854, 2013

The application of
Bayesian networks in

natural hazard
analyses

K. Vogel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

sdf FLEMOps+r BNMTE

1 0.0111 0.0108 0.0104

2 0.0133 0.0114 0.0116

3 0.0161 0.0145 0.015

4 0.0200 0.0194 0.0169

5 0.0166 0.0150 0.0163

Avg 0.0154 0.0142 0.014

Table 5. Mean squared errors of a 5-fold cross-validation, where the relative building loss is predicted with the

three models stage-damage function, FLEMOps+r and Bayesian Networks.

Fig. 3. Theoretic BN, capturing dependencies of the data generating model.

Fig. 4. BN learned from the generated synthetic data.

SD (log-scale)

κ0 (log-scale)

M

Q0 (log-scale)

VS30

R (log-scale)

lnPGA

Fig. 5. Marginal distribution of the variables, discretized according to the discretization found for the BN in

Fig. 4. The number of intervals per variable ranges from 2 to 8.

26

Fig. 3. Theoretic BN, capturing dependencies of the data generating model.
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Table 5. Mean squared errors of a 5-fold cross-validation, where the relative building loss is predicted with the

three models stage-damage function, FLEMOps+r and Bayesian Networks.

Fig. 3. Theoretic BN, capturing dependencies of the data generating model.

Fig. 4. BN learned from the generated synthetic data.
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Fig. 5. Marginal distribution of the variables, discretized according to the discretization found for the BN in

Fig. 4. The number of intervals per variable ranges from 2 to 8.
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Fig. 4. BN learned from the generated synthetic data.

5846

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
1, 5805–5854, 2013

The application of
Bayesian networks in

natural hazard
analyses

K. Vogel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

sdf FLEMOps+r BNMTE

1 0.0111 0.0108 0.0104

2 0.0133 0.0114 0.0116

3 0.0161 0.0145 0.015

4 0.0200 0.0194 0.0169

5 0.0166 0.0150 0.0163

Avg 0.0154 0.0142 0.014

Table 5. Mean squared errors of a 5-fold cross-validation, where the relative building loss is predicted with the

three models stage-damage function, FLEMOps+r and Bayesian Networks.

Fig. 3. Theoretic BN, capturing dependencies of the data generating model.

Fig. 4. BN learned from the generated synthetic data.

SD (log-scale)

κ0 (log-scale)

M

Q0 (log-scale)

VS30

R (log-scale)

lnPGA

Fig. 5. Marginal distribution of the variables, discretized according to the discretization found for the BN in

Fig. 4. The number of intervals per variable ranges from 2 to 8.

26

Fig. 5. Marginal distribution of the variables, discretized according to the discretization found
for the BN in Fig. 4. The number of intervals per variable ranges from 2 to 8.
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SD−PGA

κ0−PGA

M −PGA

Q0−PGA

VS30−PGA

R−PGA

Fig. 6. Dependencies between the predictor variables and lnPGA.

Fig. 7. Investigated catchments and location of communities reporting losses from the 2002, 2005 and 2006

flood events in the Elbe and Danube catchments.

Fig. 8. left: Markov Blanket of Xi; right: new model DAG′ derived from DAG (all edges present in the

Markov Blanket of Xi in DAG are directed towards Xi in DAG′).

28

Fig. 6. Dependencies between the predictor variables and lnPGA.
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Fig. 7. Investigated catchments and location of communities reporting losses from the 2002,
2005 and 2006 flood events in the Elbe and Danube catchments.
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Fig. 8. (a) Markov Blanket of Xi ; (b) new model DAG′ derived from DAG (all edges present in
the Markov Blanket of Xi in DAG are directed towards Xi in DAG′).
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(a)

(b)

Fig. 9. BNs learned for flood damage assessment. (a) Missing values are randomly replaced.
(b) Missing values are estimated using the Markov Blanket predictor. Nodes with a bold frame
belong to the Markov Blanket of relative building loss and are thus assumed to have direct
impact on the flood loss.
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Fig. 10. (a) Distribution of the building loss depending on the precaution. Flood specific
parameters as well as other parameters are unknown and summed out. (b) Distribution of
the building loss depending on the precaution for a specific flood situation, where water depth,
duration and flow velocity are known. Other parameters are unknown and summed out.
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Fig. 11. Summary of ten learned network structures, based on the same data set. Arrow widths between

the variables are scaled to the number of times they occur in the learned BNs. Likewise, we color-coded the

variables by the frequency with that they occur as part of the Markov Blanket of fraction of landslide affected

terrain (circular node shape), where darker hues indicate more frequent occurrence.
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Fig. 12. Illustration for the calculation of s(·) used for the parameter estimation in DAG′. The graph on the

left shows a DAG′ for the estimation of C depending A and B. The three variables take the values t and

f . An exemplary data set is given in the table on the right together with the contribution for each record to

s((C = t,(A= t,B = f)).
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Fig. 11. Summary of ten learned network structures, based on the same data set. Arrow
widths between the variables are scaled to the number of times they occur in the learned
BNs. Likewise, we color-coded the variables by the frequency with that they occur as part of
the Markov Blanket of fraction of landslide affected terrain (circular node shape), where darker
hues indicate more frequent occurrence.

5853

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/5805/2013/nhessd-1-5805-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
1, 5805–5854, 2013

The application of
Bayesian networks in

natural hazard
analyses

K. Vogel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 11. Summary of ten learned network structures, based on the same data set. Arrow widths between

the variables are scaled to the number of times they occur in the learned BNs. Likewise, we color-coded the

variables by the frequency with that they occur as part of the Markov Blanket of fraction of landslide affected

terrain (circular node shape), where darker hues indicate more frequent occurrence.

DAG′ for C

Estimate

θ̂C=t|A=t,B=f :

s(t,(t,f)) = 7
4

contribution

C A B to s(t,(t,f))

t t - 1
2

f f - 0

t t f 1

- t f 0

t - t 0

t - - 1
4

Fig. 12. Illustration for the calculation of s(·) used for the parameter estimation in DAG′. The graph on the

left shows a DAG′ for the estimation of C depending A and B. The three variables take the values t and

f . An exemplary data set is given in the table on the right together with the contribution for each record to

s((C = t,(A= t,B = f)).

30

Fig. 12. Illustration for the calculation of s(·) used for the parameter estimation in DAG′. The
graph on the left shows a DAG′ for the estimation of C depending A and B. The three variables
take the values t and f . An exemplary data set is given in the table on the right together with
the contribution for each record to s(C = t, (A = t,B = f )).
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